Вопрос задан 09.01.2019 в 11:28. Предмет Геометрия. Спрашивает Ермолаев Глеб.

В тетраэдре (все ребра равны между собой) ребро 8см.Найдите площадь ортогональной проекции боковой

грани на плоскость основания.(с чертежем)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника.
ОВ = 8/√3 см.
По теореме пифагора высота OF =  √ (64 - 64/3) = 8√2/√3 см
Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра.
Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию.
ЕЕ площадь:
S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2
Если не нравятся корни в ответах, то поможет калькулятор, хотя обычно ответ принято оставлять в такой форме.     
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос