
Вопрос задан 07.01.2019 в 21:47.
Предмет Геометрия.
Спрашивает Безрукова Лина.
внутри параллелограмма отметили точку м. докажите, что сумма площадей треугольников ABM и CDM равна
половине площади параллелограмма ABCD

Ответы на вопрос

Отвечает Кулакова Татьяна.
параллелограмм АВСД, АВ=СД, АД=ВС, проводим высоту ВК на СД, площадь АВСД=СД*ВК, М - произвольная точка (для построения - если считать точку О пересечение диагоналей то М по диагонали АС между А и О , ближе к О), через точку М проводим линию параллельную ВК, на АВ она пересекается в точке К, на продолжении СД в точке Т,
КМ-высота для треугольника АВМ, площадь треугольника АВМ=1/2*АВ(СД)*МК,
МТ-высота для треугольника СМД, площадь СМД=1/2*СД(АВ)*МТ, площадь АВМ+площадьСМД=1/2*СД*МК+1/2*СД*МТ=1/2СД*(МК+МТ), но МК+МТ=КТ, а КТ=ВК, тогда площадь АВМ+площадь СМД=1/2*СД*ВК, т.е=1/2 площади АВСД


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili