Вопрос задан 19.04.2018 в 16:18. Предмет Геометрия. Спрашивает Яковлева Милана.

Проведены касательные к окружности AB, BD и DE, так, что A, C и E — точки касания . Периметр

ломаной ABDE равен 43,3 см. Определи длину отрезка DB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Минский Арсений.

Проведём радиусы ОА⊥АВ, ОС⊥ВД и ОЕ⊥ДЕ, а также соединим центр окружности О с точками В и Д. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСД и ОЕД.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСД = ΔОЕД (сторона ОД - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СД = ДЕ = у(обозначение у для простоты письма)
Нам  нужно найти ДВ = ВС + СД = х + у
Длина ломаной АВДС = АВ + ВС + СД + ДЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)
Ответ ДВ = 21,65см 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос