Вопрос задан 19.04.2018 в 16:18.
Предмет Геометрия.
Спрашивает Яковлева Милана.
Проведены касательные к окружности AB, BD и DE, так, что A, C и E — точки касания . Периметр
ломаной ABDE равен 43,3 см. Определи длину отрезка DBОтветы на вопрос
Отвечает Минский Арсений.
Проведём радиусы ОА⊥АВ, ОС⊥ВД и ОЕ⊥ДЕ, а также соединим центр окружности О с точками В и Д. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСД и ОЕД.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСД = ΔОЕД (сторона ОД - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СД = ДЕ = у(обозначение у для простоты письма)
Нам нужно найти ДВ = ВС + СД = х + у
Длина ломаной АВДС = АВ + ВС + СД + ДЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)
Ответ ДВ = 21,65см
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
