
Вопрос задан 29.12.2018 в 07:41.
Предмет Геометрия.
Спрашивает Егоров Денис.
Диагональ правильной четырехугольной призмы равна 6 см, а площадь боковой поверхности - 32 см².
Найти объем призмы

Ответы на вопрос

Отвечает Краус Денис.
D=6см
а-сторона основания,h-высота
d=√(2a²+h²)
Sбок 4ah=32
ah=8
h=8/a
d²=2a²+64/a²=36
2a^4-36a²+64=0
a²=b
b²-18b+32=0
b1=b2=18 U b1*b2=32
b1=2⇒a²=2⇒a=√2 U a=-√2 не удов усл
h1=8/√2=4√2
b2=16⇒a²=16⇒a=4 U a=-4 не удов усл
h2=8/4=2
V=a²h
V1=2*4√2=8√2см³
V2=4²*2=32см³
а-сторона основания,h-высота
d=√(2a²+h²)
Sбок 4ah=32
ah=8
h=8/a
d²=2a²+64/a²=36
2a^4-36a²+64=0
a²=b
b²-18b+32=0
b1=b2=18 U b1*b2=32
b1=2⇒a²=2⇒a=√2 U a=-√2 не удов усл
h1=8/√2=4√2
b2=16⇒a²=16⇒a=4 U a=-4 не удов усл
h2=8/4=2
V=a²h
V1=2*4√2=8√2см³
V2=4²*2=32см³



Отвечает Гладков Сергей.
Площадь боковой поверхности равна: S=4ah, где а - сторона основания, h - высота призмы. h=S/4a=32/4a=8/a.
Диагональ основания по т. Пифагора: d²=D²-h², где D - диагональ призмы. d=a√2, значит 2а²=6²-64/а²,
2а⁴-36а²+64=0,
а²₁=2,
а²₂=16.
а₁=√2, а₂=4.
h₁=4√2, h₂=2.
Объём призмы: V=Sh=a²h. Задача имеет два решения:
V₁=(√2)²·4√2=8√2 см²
и
V₂=4²·2=32 см².
Диагональ основания по т. Пифагора: d²=D²-h², где D - диагональ призмы. d=a√2, значит 2а²=6²-64/а²,
2а⁴-36а²+64=0,
а²₁=2,
а²₂=16.
а₁=√2, а₂=4.
h₁=4√2, h₂=2.
Объём призмы: V=Sh=a²h. Задача имеет два решения:
V₁=(√2)²·4√2=8√2 см²
и
V₂=4²·2=32 см².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili