Вопрос задан 29.12.2018 в 02:45. Предмет Геометрия. Спрашивает Шефер Саша.

Найдите длину медианы ВМ треугольника, вершинами которого есть точки А(3;-2), В(2;3), С(7;4)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиева Руслана.
Найдем координаты точки M - середины стороны AC треугольника ABC. (Медиана треугольника - это отрезок, соединяющий какую-либо вершину треугольника с точкой, являющейся серединой противоположной стороны этого треугольника).
векторAC = (7-3;4-(-2)) = (4;6).
(векторAC)/2 = (1/2)*(4;6) = (4/2;6/2) = (2;3) = векторAM.
координаты точки М это координаты вектораOM, где O - начало координат. И векторOM = векторOA + векторAM.
векторOA выражается координатами точки A, т.е.
векторOA = (3;-2).
векторOM = (3;-2) + (2;3) = (3+2; -2+3) = (5;1).
Координаты т. M (5;1).
Найдем векторBM,
векторBM = векторOM - векторOB = (5;1) - (2;3) = (5-2;1-3) = (3;-2),
Искомое значение - это модуль вектора BM.
|векторBM| = корень_квадратный( 3^2 + (-2)^2 ) =
= корень_квадратный( 9 + 4) = корень_кв(13).
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос