
Вопрос задан 28.12.2018 в 19:39.
Предмет Геометрия.
Спрашивает Кузнецова Софья.
Треугольник ACB - прямоугольный(C=90 градусов), AC=CB=3 см. Треугольник AMC имеет общую сторону AC
с треугольником ACB, AM=CM=корень из 6. Плоскости треугольников взаимно перпендикулярны


Ответы на вопрос

Отвечает Масунова Елизавета.
1. По теореме о трех перпендикулярах наклонная МС перпендикулярна прямой ВС, так как ее проекция НС перпендикулярна прямой ВС, что и требовалось доказать.
2. Углом между плоскостью (АВС) и не перпендикулярной ей прямой (МВ) называется угол между этой прямой и ее проекцией на данную плоскость - угол МВН.
МН - высота равнобедренного треугольника АМС, проведенная к основанию АС и делит его пополам (свойство).
Следовательно, СН=3/2см. Тогда в прямоугольном треугольнике МСН: МН=√6-9/4)=√15/2см.
А в треугольнике НСВ гипотенуза ВН=√(9/4+9)=3√5/2см.
В прямоугольном треугольнике МНВ:
Tg(MBH)=MH/BH = √3/3. (отношение противолежащего катета к прилежащему).
Значит искомый угол равен α=arctg(√3/3) = 30°.
3. Расстояние от точки Е до плоскости МВС, не содержащей эту точку, есть длина отрезка ЕР перпендикуляра, опущенного из этой точки на данную плоскость.
В прямоугольном треугольнике ЕРК: ЕК=3/2см (так как ЕК - средняя линия треугольника АВС). <PKE=<MCA как углы с параллельными сторонами (плоскость МСА параллельна плоскости РКЕ).
Sin(<MCA)=MH/MC = (√15/2)/√6=√3*√5/(2√3*√2) = √10/4.
Тогда РЕ= ЕК*Sin(<PKE) = (3/2)*(√10/4) = 3√10/8 ≈1,186см.
Ответ: расстояние от точки Е до плоскости ВМС равно 3√10/8 ≈1,186см.
2. Углом между плоскостью (АВС) и не перпендикулярной ей прямой (МВ) называется угол между этой прямой и ее проекцией на данную плоскость - угол МВН.
МН - высота равнобедренного треугольника АМС, проведенная к основанию АС и делит его пополам (свойство).
Следовательно, СН=3/2см. Тогда в прямоугольном треугольнике МСН: МН=√6-9/4)=√15/2см.
А в треугольнике НСВ гипотенуза ВН=√(9/4+9)=3√5/2см.
В прямоугольном треугольнике МНВ:
Tg(MBH)=MH/BH = √3/3. (отношение противолежащего катета к прилежащему).
Значит искомый угол равен α=arctg(√3/3) = 30°.
3. Расстояние от точки Е до плоскости МВС, не содержащей эту точку, есть длина отрезка ЕР перпендикуляра, опущенного из этой точки на данную плоскость.
В прямоугольном треугольнике ЕРК: ЕК=3/2см (так как ЕК - средняя линия треугольника АВС). <PKE=<MCA как углы с параллельными сторонами (плоскость МСА параллельна плоскости РКЕ).
Sin(<MCA)=MH/MC = (√15/2)/√6=√3*√5/(2√3*√2) = √10/4.
Тогда РЕ= ЕК*Sin(<PKE) = (3/2)*(√10/4) = 3√10/8 ≈1,186см.
Ответ: расстояние от точки Е до плоскости ВМС равно 3√10/8 ≈1,186см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili