Вопрос задан 28.12.2018 в 13:52. Предмет Геометрия. Спрашивает Васюченко Никита.

Как выразить площадь прямоугольного треугольника.через высоту и биссектрису,проведенные из вершины

прямого угла
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бахман Евгения.
Обозначим вершины треугольника: А, В, С, основание высоты из вершины В прямого угла  - М, точку пересечения биссектрисой гипотенузы - К.
Тогда ВМ / ВК = cos МВК. Угол МВК = arc cos (ВМ / ВК).
Угол  СВК = КВА = 45°, так как  ВК - биссектриса прямого угла.
Угол СВМ = 45 - (arc cos (ВМ / ВК)),
 а угол МВА =45 + (arc cos (ВМ / ВК)).
Отсюда стороны треугольника равны:
ВС = ВМ / cos(45 - (arc cos (ВМ / ВК))).
BA = BM / cos(45 + (arc cos (ВМ / ВК)).
Гипотенузу АС находим по Пифагору: СА = √(ВС²+ВА²), тогда площадь треугольника АВС = (1/2)*АС*ВМ.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос