
Вопрос задан 19.04.2018 в 00:57.
Предмет Геометрия.
Спрашивает Киевская Ира.
Сторона AB тупоугольного треугольника ABC в √3 раз больше радиуса описанной около него окружности.
Найдите угол C . Ответ дайте в градусах.

Ответы на вопрос

Отвечает Искакова Дарья.
Пусть а - сторона треугольника (АВ=√3R), α - угол, противолежащий стороне а (угол С), R - радиус описанной окружности.
По формуле: а/sinα=2R находим sinα
sinα=а/2R=AB/2R=√3R/2R=√3/2
2) Если известно, что sin 60=√3/2 и что угол С тупой, но синус его тоже равен √3/2, то угол С можно узнать из формулы sin (180-x)=sin x
угол C = 180- 60 = 120 гр


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili