Вопрос задан 19.04.2018 в 00:57. Предмет Геометрия. Спрашивает Киевская Ира.

Сторона AB тупоугольного треугольника ABC в √3 раз больше радиуса описанной около него окружности.

Найдите угол C . Ответ дайте в градусах.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Искакова Дарья.

Пусть а - сторона треугольника (АВ=√3R), α - угол, противолежащий стороне а (угол С), R - радиус описанной окружности.
 По формуле:  а/sinα=2R находим sinα
sinα=а/2R=AB/2R=√3R/2R=√3/2
2) 
Если известно, что  sin 60=√3/2 и что угол С тупой, но синус его тоже равен √3/2, то угол С можно узнать из формулы sin (180-x)=sin x
 угол C = 180- 60 = 120 гр

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос