
Вопрос задан 26.12.2018 в 18:31.
Предмет Геометрия.
Спрашивает Иванова Ульяна.
Дано: Треугольник ABC - равнобедренный. AB - биссектриса угла DBC. Доказать DB параллельно АC.


Ответы на вопрос

Отвечает Королькова Лілія.
Дано: треугольник АВС; AД - биссектриса AO = OД MO перпендикулярно AД Доказать: что AВ параллельно MД Доказательство: 1) Рассмотрим треугольники АОМ и ОМД. У них сторона МО - общая, АО = ОД по условию задачи, угол ДОМ = углу АОМ = 90 градусов так, как MO перпендикулярно AД. Следовательно треугольники АОМ = ОМД; 2) Тогда угол МДО = углу ОМА = углу ВАД так, как AД - биссектриса; 3) Углы МДО и АВД - накрест лежащие для прямых МД и АВ и секущей АД. Так, как угол МДО = углу ВАД, то прямые МД и АВ параллельны. Доказано.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili