
Вопрос задан 25.12.2018 в 09:12.
Предмет Геометрия.
Спрашивает Зайцева Виктория.
Диагонали равнобедренной трапеции трапеции ABCD взаимно перпендикулярны, BH - высота к большему
основанию трапеции CD а) докажите что треугольник BHD - равнобедренный б) найдите площадь трапеции, если ее средняя линия равна 11.

Ответы на вопрос

Отвечает Нургазы Али.
Разбираемся с чертежом. Есть трапеция АВСD, Проведена высота ВH. Диагонали взаимно перпендикулярны. Проведём из вершины С прямую, параллельную диагонали ВD. Построим Δ ACК. Этот Δ прямоугольный , равнобедренный ( АС = СК) Этот треугольник подобен ΔDDH ( по 1 признаку подобия) Значит, ΔBDH - равнобедренный.
ΔАСК - прямоугольный. В нём АК ==22.По т. Пифагора СА^2 + CK^2 = 484,
CA ^2 =242. CA - 11√2.
А теперь ΔВH D. По т. Пифагора BH^2 + BD^2 = 242. DH^2 =121, BH = 11. Площадь трапеции равна произведению средней линии и её высоты.
S = 11·11 = 121.
ΔАСК - прямоугольный. В нём АК ==22.По т. Пифагора СА^2 + CK^2 = 484,
CA ^2 =242. CA - 11√2.
А теперь ΔВH D. По т. Пифагора BH^2 + BD^2 = 242. DH^2 =121, BH = 11. Площадь трапеции равна произведению средней линии и её высоты.
S = 11·11 = 121.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili