
Вопрос задан 18.04.2018 в 13:22.
Предмет Геометрия.
Спрашивает Бутылкина Катюша.
Радиус окружности с центром в точке O равен 97, длина хорды AB равна 130 .Найдите
расстояние от хорды AB до параллельной ей касательной k

Ответы на вопрос

Отвечает Чухолдин Александр.
Пусть С - середина АВ. Тогда ОС - медиана и высота равнобедренного треугольника АОВ (ОА = ОВ = 97 как радиусы).
ΔАОС: по теореме Пифагора
ОС = √(ОА² - АС²) = √(97² - 65²) = √((97 - 65)(97 + 65)) = √(32 · 162) =
= √(2 · 16 · 2 · 81) = 2 · 4 · 9 = 72.
Так как касательная параллельна хорде АВ, то она перпендикулярна диаметру, на котором лежит ОС, таких касательных может быть две.
Тогда расстояние до касательной:
ЕС = R - OC = 97 - 72 = 25
или
СМ = R + OC = 97 + 72 = 169



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili