Вопрос задан 16.11.2018 в 00:52. Предмет Геометрия. Спрашивает Медведева Екатерина.

Основою піраміди є рівнобедрений трикутник з основою 12 см. Бічні грані піраміди, що містять бічні

сторони трикутника перпендикулярні до площини основи,а третя грань утврює з площиною основи кут 30. Знайдіть площу повної поверхні піраміди,якщо її висота дорівнює 8√3 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Грухина Вероника.
Пусть имеем треугольную пирамиду SABC.
Вертикальное ребро SA - высота пирамиды, равна 8√3 см.
SД - высота наклонной боковой грани,
АД - высота основания.

Рассмотрим прямоугольный треугольник SАД.
По заданию угол SАД равен 30 градусов.
Тогда высота АД = SA/(tg 30) = 8√3/(1/√3) = 8*3 = 24 см.
Высота SД = SА/(sin 30) = 8√3/(1/2) = 16√3 см.
Площадь основания So = (1/2)*12*24 = 144 см².
Боковое ребро основания равно:
АС = √(24²+6²) = √(576 + 36) = √612 = 6√17 см.
Площадь боковой поверхности равна:
Sбок = 2*(1/2)*(6√17)*(8√3) + (1/2)*12*16√3 =
         = 48√51 + 96√3 = 48(√51 + 2√3) см².
Полная площадь поверхности пирамиды равна:
S = So + Sбок = 144 + 48(√51 + 2√3) см².

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос