 
дано четырехугльник АБСД АБ=СД БС=АД угол А = 30градусов точка Е принадлежит БС угол СДЕ = 60
градусов Доказать АБЕД прямоугольная трапеция 0
        0
         0
        0
    Ответы на вопрос
 
        Дан четырехугольник ABCD
AB=CD
BC=AD
угол A = 30⁰
E ∋ BC
угол CDE = 60⁰
Доказать. ABED - прямоугольная трапеция.
Доказательство.
Рассм. ABCD. угол A = 30⁰ ⇒ угол С = 30⁰
угол В = углу D = (360⁰ - 30⁰ - 30⁰)/2 = 300⁰/2 = 150⁰
угол ADE = угол ADC - угол CDE
т.к. угол ADC 150⁰, a по условию угол CDE = 60⁰, то угол AED = 150⁰ - 60⁰ = 90⁰
Опеределения:
- трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны.
- трапеция, один из углов которой прямой, называется прямоугольной
Рассмотрим ABED - четырехугольник.
BE||AD,
AB не параллельно ED (т.к. ED перпендикуляр к AD)
угол EDA - 90⁰
След-но ABED - прямоугольная трапеция.
 0
                    0
                     0
                    0
                 
            Given Information:
We are given a quadrilateral ABCD, where AB = CD, BS = AD, angle A = 30 degrees, point E lies on BS, and angle SDE = 60 degrees. We need to prove that ABCD is a right trapezoid.Proof:
To prove that ABCD is a right trapezoid, we need to show that one pair of opposite angles is right angles and that the non-parallel sides are congruent.Let's start by examining the given information and the angles in the quadrilateral:
1. Angle A = 30 degrees (given) 2. Angle SDE = 60 degrees (given)
Since angle A is given as 30 degrees, we can conclude that angle B is also 30 degrees because opposite angles in a quadrilateral are congruent.
Now, let's examine the angles in triangle SDE:
3. Angle SDE = 60 degrees (given) 4. Angle SED = 180 - 60 = 120 degrees (sum of angles in a triangle)
Since angle SED is 120 degrees, we can conclude that angle SDE is also 120 degrees because opposite angles in a triangle are congruent.
Now, let's examine the angles in triangle ABE:
5. Angle ABE = 180 - 30 - 120 = 30 degrees (sum of angles in a triangle)
Since angle ABE is 30 degrees, we can conclude that angle BED is also 30 degrees because opposite angles in a triangle are congruent.
Now, let's examine the angles in triangle BCD:
6. Angle BCD = 180 - 30 - 30 = 120 degrees (sum of angles in a triangle)
Since angle BCD is 120 degrees, we can conclude that angle BDC is also 120 degrees because opposite angles in a triangle are congruent.
Now, let's examine the angles in triangle BAC:
7. Angle BAC = 180 - 30 - 30 = 120 degrees (sum of angles in a triangle)
Since angle BAC is 120 degrees, we can conclude that angle BCA is also 120 degrees because opposite angles in a triangle are congruent.
From the above information, we can conclude that angle BCD = angle BDC = 120 degrees and angle BAC = angle BCA = 120 degrees. Therefore, opposite angles in the quadrilateral ABCD are congruent.
Now, let's examine the sides of the quadrilateral:
8. AB = CD (given) 9. BS = AD (given)
Since AB = CD and BS = AD, we can conclude that opposite sides in the quadrilateral ABCD are congruent.
Based on the above information, we can conclude that ABCD is a right trapezoid because one pair of opposite angles (BCD and BDC) is right angles and the non-parallel sides (AB and CD) are congruent.
Therefore, we have proved that ABCD is a right trapezoid.
Note: The given information and the proof provided are based on the given angles and sides. If there are any additional constraints or information, please let me know, and I will be happy to assist you further.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			