
Вопрос задан 29.09.2018 в 15:25.
Предмет Геометрия.
Спрашивает Костина Вероника.
Биссектриса равностороннего треугольника равна 9√3.Найдите его сторону.


Ответы на вопрос

Отвечает Узоков Мехрубон.
Биссектриса равностороннего треугольника является и высотой и медианой.
Биссектриса разделила основание пополам ( см. рисунок)
Обозначим сторону треугольника х
По теореме Пифагора
х²=(х/2)²+(9√3)²
3х²/4=243
х²=324
х=18
Биссектриса разделила основание пополам ( см. рисунок)
Обозначим сторону треугольника х
По теореме Пифагора
х²=(х/2)²+(9√3)²
3х²/4=243
х²=324
х=18



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения стороны равностороннего треугольника по известной длине биссектрисы можно воспользоваться следующей формулой.
Пусть \( s \) - сторона треугольника, \( l \) - длина биссектрисы. Тогда формула связывающая сторону и биссектрису равностороннего треугольника выглядит так:
\[ l = \frac{2}{\sqrt{3}} \cdot \sqrt{a^2 - \frac{a^2}{4}} \]
Где \( a \) - длина стороны треугольника.
Упростим формулу:
\[ l = \frac{2}{\sqrt{3}} \cdot \sqrt{\frac{3a^2}{4}} \]
\[ l = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} \cdot a \]
\[ l = a \]
Таким образом, длина биссектрисы равностороннего треугольника равна длине его стороны. В данном случае, если биссектриса равна \( 9\sqrt{3} \), то сторона треугольника также равна \( 9\sqrt{3} \).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili