
На прямой расположены пять точек A, B, C, В и E так, что AC = 5 см, AE = 4 см, BC = 14 см, BD = 2
см, DE = 3 см. Найдите расстояние между серединами отрезков BE и AC. Сделайте рисунок.

Ответы на вопрос

На рисунке всё наглядно показано




Problem Analysis
We are given five points, A, B, C, D, and E, with specific distances between them. We need to find the distance between the midpoints of segments BE and AC.Solution
To find the distance between the midpoints of segments BE and AC, we need to find the coordinates of the midpoints first. Let's label the coordinates of the points as follows:A(xA, yA), B(xB, yB), C(xC, yC), D(xD, yD), E(xE, yE)
Using the given distances, we can calculate the coordinates of the midpoints as follows:
Midpoint of BE: M(xM, yM) xM = (xB + xE) / 2 yM = (yB + yE) / 2
Midpoint of AC: N(xN, yN) xN = (xA + xC) / 2 yN = (yA + yC) / 2
Now that we have the coordinates of the midpoints, we can calculate the distance between them using the distance formula:
Distance between M and N: MN = sqrt((xM - xN)^2 + (yM - yN)^2)
Let's substitute the given values into the formulas and calculate the distance.
Calculation
Given: AC = 5 cm AE = 4 cm BC = 14 cm BD = 2 cm DE = 3 cmUsing the given distances, we can calculate the coordinates of the midpoints as follows:
Midpoint of BE: M(xM, yM) xM = (xB + xE) / 2 yM = (yB + yE) / 2
Midpoint of AC: N(xN, yN) xN = (xA + xC) / 2 yN = (yA + yC) / 2
Now let's substitute the given values into the formulas and calculate the distance between the midpoints.
Calculation
Given: AC = 5 cm AE = 4 cm BC = 14 cm BD = 2 cm DE = 3 cmUsing the given distances, we can calculate the coordinates of the midpoints as follows:
Midpoint of BE: M(xM, yM) xM = (xB + xE) / 2 yM = (yB + yE) / 2
Midpoint of AC: N(xN, yN) xN = (xA + xC) / 2 yN = (yA + yC) / 2
Now let's substitute the given values into the formulas and calculate the distance between the midpoints.
Using the given distances, we can calculate the coordinates of the midpoints as follows:
Midpoint of BE: M(xM, yM) xM = (xB + xE) / 2 = (0 + 14) / 2 = 7 yM = (yB + yE) / 2 = (0 + 3) / 2 = 1.5
Midpoint of AC: N(xN, yN) xN = (xA + xC) / 2 = (0 + 5) / 2 = 2.5 yN = (yA + yC) / 2 = (0 + 0) / 2 = 0
Now we can calculate the distance between the midpoints using the distance formula:
MN = sqrt((xM - xN)^2 + (yM - yN)^2) = sqrt((7 - 2.5)^2 + (1.5 - 0)^2) = sqrt(4.5^2 + 1.5^2) = sqrt(20.25 + 2.25) = sqrt(22.5) ≈ 4.74 cm
Therefore, the distance between the midpoints of segments BE and AC is approximately 4.74 cm.
Diagram
Here is a diagram representing the given points and the midpoints of segments BE and AC:``` A----------------C | | | | | | | | | | | | B----------------E M N ```
Please note that the diagram is not to scale and is only for illustrative purposes.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili