
Стороны треугольника равняется 24 см 18 см и 8 см найти наибольший угол треугольника


Ответы на вопрос

По т.косинусов
576=324+64-2•18•8•cosα
cosα=252:(-18•16)=-7/8
Наибольший угол arccos 7/8 или arccos -0,875 ( это угол 151°}



Finding the Largest Angle of a Triangle
To find the largest angle of a triangle, we need to determine the relationship between the lengths of the sides. Let's consider the given lengths of the sides of the triangle: 24 cm, 18 cm, and 8 cm.
According to the triangle inequality theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. This theorem helps us determine the type of triangle based on the lengths of its sides.
Let's analyze the given lengths of the sides:
- Side 1: 24 cm - Side 2: 18 cm - Side 3: 8 cm
Based on the triangle inequality theorem, we can determine that this triangle is valid because the sum of the lengths of any two sides is greater than the length of the third side:
- Side 1 + Side 2 = 24 cm + 18 cm = 42 cm > Side 3 - Side 2 + Side 3 = 18 cm + 8 cm = 26 cm > Side 1 - Side 3 + Side 1 = 8 cm + 24 cm = 32 cm > Side 2
Now, let's find the largest angle of the triangle. To do this, we can use the Law of Cosines, which relates the lengths of the sides of a triangle to the cosine of one of its angles.
The Law of Cosines states that for a triangle with sides of lengths a, b, and c, and an angle opposite side c, the following equation holds:
c^2 = a^2 + b^2 - 2ab * cos(C)
In this case, we can label the sides of the triangle as follows:
- Side a: 24 cm - Side b: 18 cm - Side c: 8 cm
Let's calculate the largest angle using the Law of Cosines:
8^2 = 24^2 + 18^2 - 2 * 24 * 18 * cos(C)
Simplifying the equation:
64 = 576 + 324 - 864 * cos(C)
64 = 900 - 864 * cos(C)
864 * cos(C) = 900 - 64
864 * cos(C) = 836
cos(C) = 836 / 864
cos(C) ≈ 0.9676
To find the largest angle, we need to find the inverse cosine (arccos) of 0.9676:
C ≈ arccos(0.9676)
Using a calculator, we find that the approximate value of C is 14.5 degrees.
Therefore, the largest angle of the triangle is approximately 14.5 degrees.
Please note that the calculations provided are based on the given lengths of the sides of the triangle. If there are any errors or discrepancies in the given lengths, the results may vary.


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili