Вопрос задан 04.09.2018 в 02:03. Предмет Геометрия. Спрашивает DELETED.

Определите площадь заштрихованной на рисунке фигуры, если О1 - центр окружности с радиусом 4 см,

угол АО1В = 120º , О2 - центр окружности с диаметром АВ. (рисунок во вложенном файле)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морсакова Ирина.

Для удобства обозначим на линии ОО1 точки её пересечения с окружностями. Первая по ходу от О2 будет М далее К.Центр малой окружности лежит на диаметре АВ(по условию). Значит слева от АВ имеем половину окружности с диаметром АВ(фигура АКВ) если из неё вычесть фигуру АМВ то получим площадь заштрихованной.фигуры. Найдём АВ как длину хорды. АВ=2Rsinа/2=2Rsin60=6,92. Площадь фигуры АКВ=половине площади круга=(пи Дквадрат/4):2=(пи АВквадрат)/8=18,8. Площадь фигуры АМВ найдём как площадь сегмента=Rквадрат/2*(пи *а /180-sinа)=Rквадрат/2(пи 120/180-sin 120)=9,76. (синус 120= синус60). Площадь защтрихованной фигуры=18,8-9,76=9,04.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос