Вопрос задан 04.09.2018 в 02:03.
Предмет Геометрия.
Спрашивает DELETED.
Определите площадь заштрихованной на рисунке фигуры, если О1 - центр окружности с радиусом 4 см,
угол АО1В = 120º , О2 - центр окружности с диаметром АВ. (рисунок во вложенном файле)
Ответы на вопрос
Отвечает Морсакова Ирина.
Для удобства обозначим на линии ОО1 точки её пересечения с окружностями. Первая по ходу от О2 будет М далее К.Центр малой окружности лежит на диаметре АВ(по условию). Значит слева от АВ имеем половину окружности с диаметром АВ(фигура АКВ) если из неё вычесть фигуру АМВ то получим площадь заштрихованной.фигуры. Найдём АВ как длину хорды. АВ=2Rsinа/2=2Rsin60=6,92. Площадь фигуры АКВ=половине площади круга=(пи Дквадрат/4):2=(пи АВквадрат)/8=18,8. Площадь фигуры АМВ найдём как площадь сегмента=Rквадрат/2*(пи *а /180-sinа)=Rквадрат/2(пи 120/180-sin 120)=9,76. (синус 120= синус60). Площадь защтрихованной фигуры=18,8-9,76=9,04.
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
