Вопрос задан 21.08.2018 в 11:49. Предмет Геометрия. Спрашивает Панфёрова Аня.

В параллелограмме ABCD стороны равны 14 см и 8 см, высота, проведённая к большой стороне, равна 4

см. Найдите площадь параллелограмма и вторую высоту
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Игилик Нурсултан.

Вторая высота=4, потому что высоты в параллелограмме равны, S=4*14=56
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем воспользоваться формулой для площади параллелограмма:

\[ S = a \cdot h_a \]

где: - \( S \) - площадь параллелограмма, - \( a \) - длина одной из сторон параллелограмма, - \( h_a \) - высота, проведенная к этой стороне.

В данном случае у нас есть параллелограмм ABCD, где стороны равны 14 см и 8 см, а высота, проведенная к большой стороне (14 см), равна 4 см. Таким образом, можно выбрать большую сторону (14 см) в качестве \( a \), а её соответствующая высота (4 см) в качестве \( h_a \).

Подставим значения в формулу:

\[ S = 14 \, \text{см} \cdot 4 \, \text{см} \]

\[ S = 56 \, \text{см}^2 \]

Таким образом, площадь параллелограмма ABCD равна 56 квадратным сантиметрам.

Теперь давайте найдем вторую высоту. Мы можем воспользоваться тем фактом, что площадь параллелограмма можно выразить двумя способами:

\[ S = a \cdot h_a = b \cdot h_b \]

где: - \( b \) - другая сторона параллелограмма, - \( h_b \) - высота, проведенная к этой стороне.

Мы знаем, что \( a = 14 \, \text{см} \), \( h_a = 4 \, \text{см} \), и \( S = 56 \, \text{см}^2 \). Теперь мы можем решить уравнение для \( h_b \):

\[ 56 \, \text{см}^2 = 14 \, \text{см} \cdot h_a = 8 \, \text{см} \cdot h_b \]

Решая уравнение, получаем:

\[ h_b = \frac{56 \, \text{см}^2}{8 \, \text{см}} = 7 \, \text{см} \]

Таким образом, вторая высота равна 7 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос