Вопрос задан 20.08.2018 в 08:24. Предмет Геометрия. Спрашивает Ергеш Уалихан.

В параллелограмме KLMN каждый из углов LKM и MNL равен 57 градусов. Определите, является ли

параллелограмм прямоугольником.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ситдикова Алиса.

я нарисовал этот рисунок, все обозначил. если LKM и MNL равны 57 градусов, то углы NLK и KMN тоже равны 57 градусов, как накрест лежащие. выходит, что LO=ON=KO=OM, где О-точка пересечения диагоналей. а так как в прямоугольнике точка пересечения диагоналей является серединой этих диагоналей, то данный параллелограм можно считать прямоугольником))) ну как то так)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Параллелограмм KLMN не является прямоугольником, потому что его углы не равны 90 градусам. Для того, чтобы параллелограмм был прямоугольником, необходимо и достаточно, чтобы один из его углов был прямым. В данном случае, углы LKM и MNL равны 57 градусов, а углы KLN и LMN равны 180 - 57 = 123 градусов. Ни один из этих углов не является прямым, поэтому параллелограмм KLMN не является прямоугольником.

: [Критерий прямоугольности параллелограмма]

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос