Вопрос задан 10.08.2018 в 19:03. Предмет Геометрия. Спрашивает Юрковская Настюша.

В трапеции ABCD AD и BC - основания, O - точка пересечения диагоналей, AO : OC = 3 :2. Найдите

отношение площадей треугольников ABC и ACD. И надо все в подробностях расписать, что, от чего, куда и почему следует. Желательно с чертежом.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маляревич Аня.
1)Δ АОД ∞ΔСОВ по двум углам: ∠В=∠Д; ∠А=∠С-накрест лежащие при АД║ВС и секущих ВД и АС
АД:ВС=АО:ОС=3:2
2)S(ABC)=1/2*BC*h, h-высота трапеции, проведенная из А к стороне ВС
  S(ACD)=1/2*AD*h,  
S(ABC):S(ACD)=1/2BC*h:(1/2AD*h=BC/AD=2/3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a trapezoid ABCD, where AD and BC are the bases, and O is the point of intersection of the diagonals. The ratio of AO to OC is given as 3:2. We need to find the ratio of the areas of triangles ABC and ACD.

Solution

To find the ratio of the areas of triangles ABC and ACD, we need to find the lengths of their bases and heights.

Let's start by finding the lengths of the bases AD and BC. Since ABCD is a trapezoid, the bases are parallel. Therefore, AD is parallel to BC.

Next, let's find the lengths of the diagonals AC and BD. Since O is the point of intersection of the diagonals, we can use the properties of similar triangles to find the lengths of AC and BD.

Using the given ratio AO:OC = 3:2, we can assume that AO is 3x and OC is 2x, where x is a constant.

Now, let's consider triangle AOC. Since AO:OC = 3:2, we can write the following equation:

AO/OC = 3/2

Substituting the values of AO and OC, we get:

3x/2x = 3/2

Simplifying the equation, we get:

3x = 3(2x)

3x = 6x

x = 0

This means that the length of AO is 0 and the length of OC is also 0. However, this is not possible since O is the point of intersection of the diagonals. Therefore, there is an error in the given information.

Without the correct lengths of AO and OC, we cannot accurately determine the lengths of the bases AD and BC, and hence, we cannot find the ratio of the areas of triangles ABC and ACD.

Therefore, the problem cannot be solved with the given information.

Please provide the correct information or let me know if there is anything else I can help you with.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос