
4. Основание равнобедренного треугольника равно 6 см, а его периметр равен 24 см. Средняя линия
соединяет середину основания с серединой боковой стороны. Найдите длину этой средней линии.

Ответы на вопрос

Ответ:
AC - основание
BC, AB - боковые стороны
DE - средняя линия
BC = AB = (24 - 6) : 2 = 9 см
DE = 9 : 2 = 4,5 см



Для решения данной задачи, мы можем воспользоваться свойством равнобедренного треугольника, которое гласит, что средняя линия, соединяющая середину основания с серединой боковой стороны, равна половине основания.
В данной задаче, основание равнобедренного треугольника равно 6 см, а его периметр равен 24 см. Чтобы найти длину средней линии, мы можем воспользоваться формулой для периметра треугольника:
периметр = a + b + c,
где a, b и c - длины сторон треугольника.
Так как треугольник равнобедренный, мы знаем, что две стороны равны друг другу, поэтому можем записать:
периметр = a + 2b.
Из условия задачи, периметр равен 24 см, поэтому можем записать:
24 = a + 2b.
Также из условия задачи, основание равнобедренного треугольника равно 6 см, поэтому a = 6 см.
Теперь мы можем подставить это значение в уравнение для периметра:
24 = 6 + 2b.
Выражаем b:
2b = 24 - 6, 2b = 18, b = 9.
Теперь, чтобы найти длину средней линии, мы можем воспользоваться свойством равнобедренного треугольника и сказать, что средняя линия равна половине основания. Основание равно 6 см, поэтому длина средней линии равна:
длина средней линии = 6 / 2 = 3 см.
Таким образом, длина средней линии равна 3 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili