
Вопрос задан 28.07.2018 в 22:45.
Предмет Геометрия.
Спрашивает Хохлова Юлия.
В правильной четырехугольной призме ABCDA1B1C1D1 точка K делит боковое ребро AA1 в отношении AK:KA1
= 1:2. Через точки B и K проведена плоскость L, параллельная прямой AC и пересекающая ребро DD1 в точке M. Найдите площадь сечения, если известно,что AB=4, AA1=6.

Ответы на вопрос

Отвечает Багаутдинов Раис.
В сечении получается ромб.
Отрезок АК = 6*(1/3) = 2.
Сторона ромба равна √(4²+2²) = √(16+4) = √20 = 2√5.
Найдём диагонали ромба.
Так как плоскость сечения параллельна диагонали основания призмы АС, то она пересекает ребро СС₁ в точке Е на таком же расстоянии, что и ребро АА₁: СЕ - АК = 2.
Поэтому диагональ ромба ЕК = АС = 4√2.
Расстояние от точки А до линии пересечения плоскости основания и заданной плоскости (точка К₁) равно половине диагонали основания: АК₁ = ОВ = 4*cos45° = 4*(√2/2) = 2√2.
Расстояние КК₁ равно половине диагонали искомого сечения.
КК₁ = √(АК²+ АК₁²) = √(2²+(2√2)²) = √(4+8) = √12 =2√3.
Вторая диагональ ВМ = 2*КК₁ = 2*2√3 = 4√3.
Площадь сечения ромба ВЕМК равна:
S = (1/2)d₁*d₂ = (1/2)*(4√2)*(4√3) = 8√6 = 19.59592 кв.ед.
Эту же площадь можно определить другим способом:
Угол наклона плоскости заданного сечения равен:
α = arc tg(2/(2√2) = arc tg(1/√2) = arc tg 0.707107= 0.61548 радиан = 35.26439 градуса.
Косинус этого угла равен 0.816497.
Тогда искомая площадь равна площади основания призмы, делённой на косинус угла α:
S = (4*4)/0.816497 = 19.59592 кв.ед.
Отрезок АК = 6*(1/3) = 2.
Сторона ромба равна √(4²+2²) = √(16+4) = √20 = 2√5.
Найдём диагонали ромба.
Так как плоскость сечения параллельна диагонали основания призмы АС, то она пересекает ребро СС₁ в точке Е на таком же расстоянии, что и ребро АА₁: СЕ - АК = 2.
Поэтому диагональ ромба ЕК = АС = 4√2.
Расстояние от точки А до линии пересечения плоскости основания и заданной плоскости (точка К₁) равно половине диагонали основания: АК₁ = ОВ = 4*cos45° = 4*(√2/2) = 2√2.
Расстояние КК₁ равно половине диагонали искомого сечения.
КК₁ = √(АК²+ АК₁²) = √(2²+(2√2)²) = √(4+8) = √12 =2√3.
Вторая диагональ ВМ = 2*КК₁ = 2*2√3 = 4√3.
Площадь сечения ромба ВЕМК равна:
S = (1/2)d₁*d₂ = (1/2)*(4√2)*(4√3) = 8√6 = 19.59592 кв.ед.
Эту же площадь можно определить другим способом:
Угол наклона плоскости заданного сечения равен:
α = arc tg(2/(2√2) = arc tg(1/√2) = arc tg 0.707107= 0.61548 радиан = 35.26439 градуса.
Косинус этого угла равен 0.816497.
Тогда искомая площадь равна площади основания призмы, делённой на косинус угла α:
S = (4*4)/0.816497 = 19.59592 кв.ед.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для начала найдем длины отрезков AK и KA1. Так как точка K делит отрезок AA1 в отношении 1:2, то длина отрезка AK будет 2/3 от длины отрезка AA1, а длина отрезка KA1 будет 1/3 от длины от


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili