Вопрос задан 06.11.2023 в 13:16.
Предмет Геометрия.
Спрашивает Борисов Зиновий.
Диагональ куба ABCDA1B1C1D1 равна 2 корня из 3 Найдите расстояние между плоскостями AA1B и CC1D .
Ответы на вопрос
        Отвечает Баранов Максим.
                
    Диагональ куба ABCDA1B1C1D1 равна 2√3.
Найдите расстояние между плоскостями AA1B и CC1D .
Объяснение:
Расстояние между между плоскостями это отрезок перпендикулярный обеим плоскостям. Т.к. это куб, где грани квадраты , то расстоянием между плоскостями AA1B и CC1D будет отрезок ВС-сторона куба.
Пусть , для простоты она равна а. По т.о диагонали прямоугольного параллелепипеда АС1²=а²+а²+а² или (2√3)²=3а² , а²=4 , а=2.
Расстояние между плоскостями AA1B и CC1D равно 2 .
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Для решения этой задачи нам понадобится использовать теорему Пифагора и формулу расстояния между точкой и плоскостью.
Диагональ куба ABCDA1B1C1D1 равна 2√3. Поскольку это диагональ куба, она соединяет противоположные вершины этого куба.
Рассмотрим плос
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			