Вопрос задан 06.11.2023 в 13:16. Предмет Геометрия. Спрашивает Борисов Зиновий.

Диагональ куба ABCDA1B1C1D1 равна 2 корня из 3 Найдите расстояние между плоскостями AA1B и CC1D .

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баранов Максим.

Диагональ куба ABCDA1B1C1D1 равна 2√3.

Найдите расстояние между плоскостями AA1B и CC1D .

Объяснение:

Расстояние между  между плоскостями это отрезок перпендикулярный обеим плоскостям. Т.к. это куб, где грани квадраты , то  расстоянием между плоскостями AA1B и CC1D будет отрезок ВС-сторона куба.

Пусть , для простоты она равна а.  По т.о диагонали прямоугольного параллелепипеда АС1²=а²+а²+а² или (2√3)²=3а² , а²=4 , а=2.

Расстояние между плоскостями AA1B и CC1D  равно 2 .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится использовать теорему Пифагора и формулу расстояния между точкой и плоскостью.

Диагональ куба ABCDA1B1C1D1 равна 2√3. Поскольку это диагональ куба, она соединяет противоположные вершины этого куба.

Рассмотрим плос

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос