Вопрос задан 01.11.2023 в 02:12. Предмет Геометрия. Спрашивает Школьников Руслан.

Знайти площу прямокутного трикутника якщо його висота ділить гіпотенузи на відрізки 18 і 32 см

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Данилова Настя.

Ответ:

Площа прямокутного трикутника дорівнює 600 см²

Объяснение:

Знайти площу прямокутного трикутника якщо його висота ділить гіпотенузи на відрізки 18 см і 32 см.

  • Висота прямокутного трикутника, проведена з вершини прямого кута, є середнім пропорційним проекцій катетів на гіпотенузу

Дано: △АВС, ∠С=90°, CD⟂AB, AD=32 см, DB=18 см

Знайти: S(△АВС)

РОЗВ'ЯЗАННЯ

1) За метричними співвідношеннями у прямокутному трикутнику маємо:

CD² = AD • DB

CD² = 32 • 18

CD² = 576

CD = 24 см

2) Площу трикутника АВС знайдемо, як половину добутку сторони АВ, на висоту CD, що до неї проведена.

S = ½ • AB • CD

За аксиомою вимірювання відрізків отримаємо:

AB = AD + DB = 32 + 18 = 50 (см), тоді площа трикутника:

S = ½ • 50 • 24 = 50 • 12 = 600 (см²)

Відповідь: 600 см²

#SPJ1


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти площу прямокутного трикутника, нам потрібно знати його висоту та довжини катетів або гіпотенузи. У цьому випадку, ми знаємо, що висота ділить гіпотенузу на відрізки 18 і 32 см. Давайте розглянемо, як ми можемо використати цю інформацію для знаходження площі трикутника.

Визначення відношення між висотою та гіпотенузою

За умовою задачі, висота трикутника ділить гіпотенузу на відрізки 18 і 32 см. Це означає, що висота утворює два прямокутних трикутники всередині основного прямокутного трикутника. Давайте позначимо висоту як "h", а гіпотенузу як "c".

Використання подібності трикутників

Оскільки висота ділить гіпотенузу на відрізки 18 і 32 см, ми можемо встановити наступну рівність: h/18 = (c-h)/32

Ця рівність базується на подібності трикутників, оскільки висота та гіпотенуза утворюють прямі кути з катетами. Ми можемо використати цю рівність для знаходження значення висоти.

Знаходження значення висоти

Давайте розв'яжемо рівняння для висоти "h": h/18 = (c-h)/32

Ми можемо розв'язати це рівняння, перекроючи його: 32h = 18(c-h) 32h = 18c - 18h 50h = 18c h = (18c)/50

Тепер ми знаємо значення висоти "h" відносно гіпотенузи.

Знаходження площі трикутника

Тепер, коли ми знаємо значення висоти "h" відносно гіпотенузи, ми можемо використати це значення для знаходження площі прямокутного трикутника.

Площа прямокутного трикутника може бути обчислена за формулою: Площа = (1/2) * основа * висота

В нашому випадку, основа трикутника - це один з катетів, а висота - це значення "h" відносно гіпотенузи.

Обчислення площі трикутника

Давайте позначимо основу трикутника як "a" і висоту як "h". Оскільки ми знаємо, що висота ділить гіпотенузу на відрізки 18 і 32 см, ми можемо використати значення "h" для обчислення площі трикутника.

Площа = (1/2) * a * h

Тепер, коли ми знаємо значення висоти "h" відносно гіпотенузи, ми можемо використати це значення для обчислення площі трикутника.

Обчислення площі трикутника з відомими значеннями

Для обчислення площі трикутника, нам потрібно знати значення основи трикутника. У вихідних даних не надано значення основи трикутника. Без цієї інформації, ми не можемо точно обчислити площу трикутника.

Будь ласка, надайте значення основи трикутника, щоб я міг продовжити обчислення площі трикутника.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос