Вопрос задан 07.10.2023 в 11:06. Предмет Геометрия. Спрашивает Гаврилова Маша.

можно ли построить треугольник со сторонами, равными: а) 10 см, 15 см и 30 см; б) 12 см, 7см и 6

см? почему?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крылова Марина.

Сумма двух сторон должна быть больше третьей стороны

а) 10 + 15 = 25 <  30 - значит в этом случае построить треугольник нельзя;

б) 7 + 6 = 13 > 12 - а в этом случае построить треугольник можно

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Нет, нельзя построить треугольники с данными комбинациями сторон.

а) В случае со сторонами 10 см, 15 см и 30 см, нарушается неравенство треугольника. Согласно этому неравенству, сумма длин любых двух сторон треугольника всегда должна быть больше длины третьей стороны. В данном случае 10 см + 15 см = 25 см, что меньше 30 см. Поэтому нельзя построить треугольник с такими сторонами.

б) В случае со сторонами 12 см, 7 см и 6 см также нарушается неравенство треугольника. Сумма длин двух меньших сторон (7 см + 6 см) равна 13 см, что больше длины самой большой стороны (12 см). Это также не удовлетворяет условию неравенства треугольника, поэтому нельзя построить треугольник с такими сторонами.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос