
Точка А віддалена від площини (альфа) на 12 см. 3 точки А проведено до площини (альфа) похилу АВ
завдовжки 13 см. Знайти довжину проекцii похилоi АВ на площину

Ответы на вопрос

Ответ:
Проекция наклонной АВ на плоскость α равна 5 см.
Объяснение:
Перпендикуляр АН (расстояние от точки А до плоскости α) - катет прямоугольного треугольника, гипотенуза которого - наклонная АВ. Тогда проекция наклонной АВ на плоскость α - катет НВ найдем по Пифагору: НВ = √(13²-12²) = 5 см.




Для знаходження довжини проекції похилої лінії АВ на площину (альфа), можна використовувати прості правила геометрії.
Спершу, враховуємо, що точка А віддалена від площини (альфа) на 12 см. Це означає, що відстань між точкою А і площиною (альфа) дорівнює 12 см.
Потім ми проводимо похилу лінію АВ довжиною 13 см. Проекцією цієї лінії на площину (альфа) буде відрізок BC, де C - точка дотику лінії АВ і площини (альфа).
За теоремою Піфагора для прямокутного трикутника ABC ми можемо знайти довжину відрізка BC:
BC^2 = AB^2 - AC^2
BC^2 = 13^2 - 12^2 BC^2 = 169 - 144 BC^2 = 25
BC = √25 BC = 5 см
Отже, довжина проекції похилої лінії АВ на площину (альфа) дорівнює 5 см.


Похожие вопросы

Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili