Вопрос задан 04.10.2023 в 11:07. Предмет Геометрия. Спрашивает Ивашко Лёша.

Опрезки AB и CD пересекаются в точке 0, AO-OD, B0=0C. а) Докажите, что АОС= BOD.б) Найлите угол

А, если угол BOD в 107°,угол В = 35°​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аккерманова Леся.

Надеюсь, что смог помочь.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с данной задачей:

а) Нам нужно доказать, что угол AOC (AOС) равен углу BOD (BOD).

Известно, что AB и CD пересекаются в точке O, и AO = OD (AO = OD) и BO = OC (BO = OC). Это означает, что треугольники ABO и CDO равнобедренные.

Теперь давайте рассмотрим углы:

Угол ABO (угол A) и угол CDO (угол C) являются вершинными углами равнобедренных треугольников и по определению равны между собой, то есть A = C.

Угол BOD (угол B) и угол COA (угол C) являются вершинными углами равнобедренных треугольников и также равны между собой, то есть B = C.

Таким образом, мы видим, что A = C и B = C, следовательно, A = B, что и требовалось доказать.

б) Теперь у нас есть информация о значении угла BOD (BOD) и угле B (B). Угол BOD равен 107°, и угол B равен 35°.

С учетом доказательства в пункте (а) мы знаем, что угол A равен углу B, поэтому A = 35°.

Таким образом, угол A равен 35°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос