
В треугольнике ABC со сторонами AB=12, BC=15, AC=9 проведена биссектриса . Пусть - точка касания
AB с вписанной в треугольник окружностью, отрезки и пересекаются в точке P, продолжение AP пересекает BC в точке . Найти отношение .

Ответы на вопрос

Т.к. 9²+12²=15², то ∠A - прямой. Значит r=AC₁=(9+12-15)/2=3, откуда C₁B=12-3=9 и AC₁/C₁B=1/3. Т.к. BB₁ - биссектриса, то CB₁/B₁A=BC/BA=5/4. По т. Чевы (BA₁/A₁C)·(CB₁/B₁A)·(AC₁/C₁B)=1, откуда
A₁C/BA₁=(5/4)·(1/3)=5/12, т.е. BA₁=(12/17)BC=12·15/17. Т.к. BP - биссектриса треугольника ABA₁, то AP/PA₁=AB/BA₁=12/(12·15/17)=17/15.



Для решения данной задачи, нам понадобится использовать теорему о биссектрисе треугольника и теорему о вписанной окружности.
Теорема о биссектрисе треугольника
Если из вершины треугольника провести биссектрису, то она делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам треугольника.Теорема о вписанной окружности
Вписанная окружность треугольника касается каждой из его сторон в одной точке.В данной задаче требуется найти отношение длин отрезков AP и PB. Пусть отрезок AP равен x, а отрезок PB равен y.
Решение:
Из теоремы о биссектрисе треугольника, можно записать: AB/AP = BC/PCПодставим известные значения сторон треугольника: 12/x = 15/(15-y)
Теперь решим уравнение относительно y: 12(15-y) = 15x 180 - 12y = 15x
Также, известно, что точка P является точкой касания вписанной окружности. Из теоремы о вписанной окружности, можно сказать, что отрезки AP и BP равны, то есть x = y.
Подставим x = y в уравнение: 180 - 12x = 15x 180 = 27x x = 180/27 x ≈ 6.67
Отношение отрезков AP и PB равно x/y: 6.67/y = 1 y ≈ 6.67
Таким образом, отношение отрезков AP и PB примерно равно 1:1 или AP ≈ PB ≈ 6.67.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili