Вопрос задан 30.09.2023 в 18:17. Предмет Геометрия. Спрашивает Голенцова Александра.

Углы треугольника пропроционайны числам 3;8;5 докажите что этот треугольник прямоугольный

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морозов Серафим.

Ответ:

Пусть х - это часть пропорции треугольника ,, тогда получим

3 * х + 8 * х + 5 * х = 180 градусов, так как нужно доказать , что треугольник прямоугольный, а у прямоугольного треугольника сумма трех углов составляет 180 градусов, один из которых должен быть равен 90 градусов, проверим так ли это,

3 * х + 8 * х + 5 * х = 180

11 * х + 5 * х = 180

16 * х = 180

х = 180 / 16

х = 90 * 2 / ( 2 * 8 )

числитель и знаменатель сократи на 2

х = 90 / 8 градусов

что один из треугольников второй пропорции равен 90 градусов, то есть

8 * х = 8 * 90 / 8 = 90 градусов

значит доказали, что треугольник прямоугольный

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доказательства, что треугольник является прямоугольным, нам нужно показать, что угол между двумя сторонами пропорционален числам 3, 8 и 5.

Пусть у нас есть треугольник ABC, где угол A пропорционален числу 3, угол B пропорционален числу 8, и угол C пропорционален числу 5.

Теперь давайте рассмотрим три случая:

  1. Пусть угол A наименьший. Это означает, что угол A имеет наименьшую меру среди всех углов треугольника.

  2. Пусть угол B имеет наибольшую меру. Это означает, что угол B имеет наибольшую меру среди всех углов треугольника.

  3. Пусть угол C имеет наибольшую меру. Это означает, что угол C имеет наибольшую меру среди всех углов треугольника.

В каждом из этих трех случаев треугольник будет прямоугольным треугольником. Давайте рассмотрим каждый случай:

  1. Если угол A наименьший, то треугольник ABC будет прямоугольным с углом A в вершине, так как наименьший угол всегда будет против самой короткой стороны треугольника.

  2. Если угол B имеет наибольшую меру, то треугольник ABC также будет прямоугольным, так как угол B будет прямым углом.

  3. Если угол C имеет наибольшую меру, то треугольник ABC снова будет прямоугольным, так как угол C будет прямым углом.

Таким образом, независимо от того, какой из углов имеет наименьшую, наибольшую или среднюю меру, треугольник ABC будет прямоугольным, что и требовалось доказать.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос