
Вопрос задан 22.07.2018 в 07:02.
Предмет Геометрия.
Спрашивает Царьков Иван.
В треугольнике ABC известно, что АВ=13, ВС=15, АС=14. Из точки В на сторону АС проведены
биссектриса ВВ1 и высота ВН. Найдите площадь треугольника ВВ1Н

Ответы на вопрос

Отвечает Саакян Асмик.
Пусть АВ1=Х, ВВ1-биссектриса, тогда выполняется пропорция АВ/ВС=АВ1/В1С, или 13/15=X/14-X. Отсюда Х=6,5. Пусть АН=У. Тогда по теореме Пифагора АВквадрат-АНквадрат=ВСквадрат-СНквадрат, то есть 169-Уквадрат=225-(14-У)квадрат, 169-Уквадрат=225-196+28У-Уквадрат, У=5. Тогда высота треугольника АВС равна ВН=корень из(АВквадрат-АНквадрат)=корень из(169-25)=12. НВ1=АВ1-АН=6,5-5=1,5. Тогда искомая площадь Sвв1н=1/2*НВ1*ВН=1/2*1,5*12=9.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili