
Вопрос задан 20.07.2018 в 20:04.
Предмет Геометрия.
Спрашивает Ким Денис.
В треугольнике со сторанами 20, 34, 42 вписан прямоугольник с прямыми углами, периметр которого 40,
и одна из его сторон лежит на большей стороне треугольника. Найти стороны треугольника.

Ответы на вопрос

Отвечает Александронец Анастасия.
Видимо надо найти стороны ПРЯМОУГОЛЬНИКА! Так как стороны ТРЕУГОЛЬНИКА в условии даны!
Рисунок смотри во вложении.
Пусть х и у - стороны пр-ка. Проведем дополнительно высоту ВЕ тр-ка АВС.
Найдем ее. Площадь по формуле Герона:
S = корень(48*28*14*6) = 336 (полупериметр р = 48)
С другой стороны:
S = (1/2)*42*BE = 336
Отсюда ВЕ = 16
Из подобия тр-ов ВКМ и АВС:
х/42 = ВК/20
Отсюда ВК = 10х/21, АК = 20 -10х/21 = (420-10х)/21
Из подобия тр-ов АКР и АВЕ:
у/16 = АК/20
Или: у/16 = (42-х)/42
8х + 21у = 336
Другое уравнение системы получим из условия, что периметр пр-ка равен 40:
х + у = 20. Домножим это уравнение на (-8) и сложим с предыдущим.
13у = 176
у = 176/13, тогда х = 20 - 176/13 = 84/13
Ответ: 176/13; 84/13.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili