Вопрос задан 08.08.2023 в 22:17. Предмет Геометрия. Спрашивает Донской Никита.

Периметр паралеллограмма равен 32 см, а две из его относятся как 3:1. Чему равна наибольшая из его

сторон
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Краснов Николай.
Пусть х см меньшая сторона, тогда 3х большая.
Р=2*(х+3х)=32
4х=32:2
4х=16
х=16:4
х=4
4 см меньшая сторона
3*4=12 (см) большая сторона
ответ:12 см
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим стороны параллелограмма как a и b. Также известно, что a:b = 3:1.

Периметр параллелограмма равен сумме длин всех его сторон: Perimeter = 2a + 2b.

Из условия задачи известно, что периметр равен 32 см: 2a + 2b = 32.

Также дано, что a:b = 3:1, что можно записать как a = 3b.

Подставим значение a из этого равенства в уравнение для периметра: 2(3b) + 2b = 32, 6b + 2b = 32, 8b = 32, b = 4.

Теперь найдем значение a, используя соотношение a:b = 3:1: a = 3b = 3 * 4 = 12.

Таким образом, наибольшая сторона параллелограмма равна 12 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос