
если данные прямые скрещивающиеся, то 1 из 2 прямых лежит в плоскости, а другая пересекает эту
плоскость в точке, не лежащую на первой прямой. Верно ли утверждение? И почему?

Ответы на вопрос

Утверждение верно, так как это признак скрещивающихся прямых.
Его доказательство смотри на фотографии




Нет, данное утверждение неверно.
Если две прямые прямые скрещивающиеся, то это означает, что они пересекаются в одной точке и лежат в одной плоскости. Скрещивающиеся прямые имеют общую точку пересечения и не пересекаются нигде еще.
Другими словами, когда две прямые скрещиваются, они образуют угол, их продолжения также будут лежать в одной плоскости. В этой плоскости обе прямые имеют общую точку пересечения.
Если бы утверждение было верным, то это бы означало, что скрещивающиеся прямые имеют две точки пересечения, что противоречит определению скрещивающихся прямых.
Поэтому утверждение неверно, и скрещивающиеся прямые всегда лежат в одной плоскости и имеют одну точку пересечения.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili