
Вопрос задан 24.07.2023 в 21:40.
Предмет Геометрия.
Спрашивает Shamritskaya Anna.
Найти cos альфа и tg альфа, если sin альфа = 2/5 Срочно


Ответы на вопрос

Отвечает Пай Катя.
Sina=2/5
cosa-?
tga-?
cosa=под корень 1-sin^2a=под корень 21/5
tga=sina/cosa=2/5 ÷ под корень 21/5= 2/под корень 21
cosa-?
tga-?
cosa=под корень 1-sin^2a=под корень 21/5
tga=sina/cosa=2/5 ÷ под корень 21/5= 2/под корень 21



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи, мы воспользуемся тригонометрическими тождествами, а именно:
- Тождество Пифагора: sin^2(α) + cos^2(α) = 1
- Определение тангенса: tg(α) = sin(α) / cos(α)
Дано: sin(α) = 2/5
- Найдем cos(α) с помощью тождества Пифагора: sin^2(α) + cos^2(α) = 1 (2/5)^2 + cos^2(α) = 1 4/25 + cos^2(α) = 1 cos^2(α) = 1 - 4/25 cos^2(α) = 25/25 - 4/25 cos^2(α) = 21/25
Теперь найдем значение cos(α): cos(α) = ±√(21/25) cos(α) = ±(√21 / √25)
Обратим внимание, что синус отрицательный, что означает, что угол находится в III или IV квадрантах. Так как косинус положительный в IV квадранте и отрицательный в III квадранте, нам нужно выбрать знак минус, чтобы угол находился в III квадранте.
Таким образом, cos(α) = -(√21 / 5).
- Найдем tg(α) с помощью определения тангенса: tg(α) = sin(α) / cos(α) tg(α) = (2/5) / (-(√21 / 5)) tg(α) = -2√21 / 21
Таким образом, cos(α) = -(√21 / 5) и tg(α) = -2√21 / 21.


Похожие вопросы

Геометрия 71
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili