Вопрос задан 19.07.2023 в 04:40. Предмет Геометрия. Спрашивает Макарова Светлана.

Отношения радиуса описанной около прямоугольного треугольника к радиусу вписанной окружности равно

5:2 .Найдите отношения меньшего катета к большому
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гордукова Юлия.

Ответ: 3:4

Объяснение:

радиус (5х) описанной около прямоугольного треугольника окружности равен половине гипотенузы, т.е. гипотенуза = 10х;

радиус (2х) вписанной в прямоугольный треугольник окружности можно вычислить по формуле: r = (a+b-c)/2

2x = (a+b-10x)/2

4x = a+b-10x

a+b = 14x

и по т. Пифагора a^2+b^2 = 100x^2

(a+b)^2 - 2ab = 100x^2

196x^2 - 100x^2 = 2ab

ab = 48x^2

(14x-b)*b = 48x^2

b^2 - b*14x + 48x^2 = 0

D=196x^2-4*48x^2=4x^2

b1 = (14x-2x)/2 = 6x ---> a1 = 14x-6x = 8x

b2 = (14x+2x)/2 = 8x ---> a2 = 14x-8x = 6x

т.е. меньший катет (6х),

больший катет (8х),

отношение 6:8 или 3:4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть прямоугольный треугольник имеет катеты a и b, а гипотенузу c. Тогда радиус описанной окружности равен половине гипотенузы, то есть R = c/2.

Также известно, что радиус вписанной окружности равен половине суммы катетов, то есть r = (a + b)/2.

По условию задачи, отношение радиуса описанной окружности к радиусу вписанной окружности равно 5:2:

R/r = 5/2.

Заменим R и r с помощью найденных формул:

(c/2) / ((a + b)/2) = 5/2.

Упростим выражение, умножив обе части на 2/(a + b):

(c/2) * (2/(a + b)) = (5/2) * (2/(a + b)).

Получаем:

c / (a + b) = 5 / (a + b).

Сокращаем дроби и убираем знаменатель:

c = 5.

Таким образом, гипотенуза равна 5.

Теперь найдем отношение меньшего катета к большему. Из теоремы Пифагора следует, что:

c^2 = a^2 + b^2.

Подставим найденные значения:

5^2 = a^2 + b^2.

25 = a^2 + b^2.

Так как треугольник прямоугольный, один из катетов должен быть меньше гипотенузы, а другой — больше. Пусть a — меньший катет, а b — больший катет.

Тогда отношение меньшего катета к большему будет:

a/b = √(25 - a^2) / a.

Данное выражение зависит от значения a. Если вам известно значение a, подставьте его в формулу для получения конкретного численного значения отношения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос