Вопрос задан 15.07.2023 в 22:15. Предмет Геометрия. Спрашивает Воронкина Ксюша.

Гипотенуза прямоугольного треугольника равна 5 см.один из катетов 3 см найти площадь треугольника​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Титова Анна.

1) Из теоремы Пифагора находим второй катет треугольника

5²=3²+х²

25=9+х²

х²=16

х=4 (см) - второй катет

2) Площадь S= 1/2*3*4=6 (см²)

Ответ: площадь прямоугольного треугольника 6 см².

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади прямоугольного треугольника с заданными сторонами можно воспользоваться формулой:

Площадь = (1/2) * катет₁ * катет₂

Где катет₁ и катет₂ - это длины катетов треугольника.

В данном случае мы знаем, что катет₁ = 3 см и гипотенуза = 5 см. Мы можем использовать теорему Пифагора для нахождения второго катета:

гипотенуза² = катет₁² + катет₂²

5² = 3² + катет₂² 25 = 9 + катет₂² катет₂² = 25 - 9 катет₂² = 16

катет₂ = √16 катет₂ = 4 см

Теперь у нас есть значения обоих катетов. Мы можем найти площадь треугольника:

Площадь = (1/2) * 3 см * 4 см Площадь = 6 см²

Таким образом, площадь прямоугольного треугольника равна 6 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос