Вопрос задан 13.07.2018 в 02:25. Предмет Геометрия. Спрашивает Ляшко Даша.

Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции

ABCD и касается боковой стороны AD в точке T . б) Найдите расстояние от точки T до прямой BC , если основания трапеции AB и CD равны 4 и 9 соответственно.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Камаев Владимир.

Если продлить боковые стороны до пересечения в точке E, и обозначить
∠BEA = α; то
EC*sin(α) = CD = 9;
EB*sin(α) = AB = 4;
если перемножить, получится
EB*EC*(sin(α))^2 = 9*4 = 36;
ЕB*EC = ET^2; и расстояние h от T до BC равно h = ET*sin(α); поэтому
h^2 = 36; h = 6;








0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос