Вопрос задан 08.07.2023 в 13:52. Предмет Геометрия. Спрашивает Линяев Андрей.

Найти стороны равнобедренного треугольника, если его периметр 22 см, а основание на 2 см меньше

боковой стороны. (дано и решение)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аширбаева Руслана.

Ответ:

1 сторона равна - 8; 2 сторона - 8; основание - 6

Объяснение:

Решение: P- 22 см

2 стороны равны а основание на 2 меньше одной из них.

22 + 2 = 24 : 3 = 8 (см) - это 2 стороны треугольника

8 - 2 = 6 (см) - сторона основания.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть xx - длина боковой стороны треугольника, и x2x - 2 - длина основания.

Так как треугольник равнобедренный, то боковые стороны равны. Из этого следует:

x+x+(x2)=22x + x + (x - 2) = 22.

Упростим уравнение:

3x2=223x - 2 = 22,

3x=243x = 24,

x=8x = 8.

Таким образом, длина боковых сторон равна 8 см, а длина основания:

x2=82=6x - 2 = 8 - 2 = 6 см.

Итак, стороны равнобедренного треугольника: 8 см, 8 см и 6 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос