 
Вопрос задан 05.07.2023 в 09:47.
Предмет Геометрия.
Спрашивает Гавшин Андрей.
Радиус шара равен 10. определите объем шарового сектора, если дуга в его осевом сечении равна 90°
 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Добролюбов Семён.
                
    Ответ:
V = (2/3)πR²H,
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 90/2 = 45°.
Тогда V = (2/3)π10³*(1-cos45) = (2/3)π1000*(1-√2/2) = 2000/3 (1-√2/2)π
 0
                    0
                     0
                    0
                 
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Объем шарового сектора можно вычислить с помощью следующей формулы:
где:
- - объем шарового сектора,
- - радиус шара,
- - мера дуги в градусах.
Подставляя значения и , получим:
Таким образом, объем шарового сектора составляет приблизительно кубических единиц.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			