
1)Найдите отношение объёма шара к объёму вписанного к нему куба. 2)Найдите отношение объёма шара
к объёму описанного около него октаэдра 3)В шаре проведена плоскость,перпендикулярная диаметру и делящая его на части равные 3 см и 4 см.Найдите объёмы частей шара. 4)Радиус шарового сектора R, угол в осевом сечении 120 градусов.Найдите объём шарового сектора. Если можно объясните все задания поподробнее.

Ответы на вопрос

1) Чтобы найти отношение объема шара к объему вписанного в него куба, нам нужно знать, что объем шара равен (4/3)πr³, где r - радиус шара, а объем куба равен a³, где a - длина ребра куба.
Для вписанного куба в шар, диаметр куба будет равен диаметру шара, то есть 2r. Поскольку сторона куба равна диагонали его грани, то a = √(2r) (с помощью теоремы Пифагора).
Теперь мы можем записать отношение объема шара к объему куба: (4/3)πr³ / a³. Подставив выражение для a, получим отношение (4/3)πr³ / (√(2r))³.
2) Чтобы найти отношение объема шара к объему описанного около него октаэдра, нам нужно знать, что объем шара равен (4/3)πr³, где r - радиус шара, а объем октаэдра равен (2/3)√2a³, где a - длина ребра октаэдра.
Для описанного около шара октаэдра, диагональ его грани будет равна диаметру шара, то есть 2r. Поскольку апофема октаэдра равна диагонали его грани, то апофема октаэдра будет равна r√2 (апофема - расстояние от центра основания до вершины).
Теперь мы можем записать отношение объема шара к объему октаэдра: (4/3)πr³ / (2/3)√2(r√2)³. Упрощая выражение, получим отношение (4/3)πr³ / (2/3)√2r³.
3) Чтобы найти объемы частей шара после проведения плоскости, нам нужно знать, что объем шара равен (4/3)πr³, где r - радиус шара.
Поскольку плоскость делит шар на две равные части, объем каждой части будет половиной объема шара. То есть, объем каждой части будет (1/2)*(4/3)πr³.
4) Чтобы найти объем шарового сектора с радиусом r и углом в осевом сечении 120 градусов, нам нужно знать, что объем шарового сектора равен (2/3)πr³(θ/360), где r - радиус шара, θ - угол в осевом сечении.
Подставляя значение угла в формулу, получим объем шарового сектора: (2/3)πr³(120/360) = (2/3)πr³(1/3) = (2/9)πr³.
Надеюсь, это поможет вам понять как решать данные задачи. Если у вас возникнут еще вопросы, буду рад помочь.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili