
Задание 1. Прямая AB касается окружности с центром O в точке B. Найдите AO, если радиус окружности
– 3 см, а хорда, один конец которой совпадает с точкой касания, а второй – с точкой пересечения окружности и прямой AO, стягивает дугу 45°.

Ответы на вопрос

Ответ: 3 корней из двух см
Объяснение:
На фото подробное решение




Для решения этой задачи, нам нужно использовать свойство касательной к окружности и свойства центрального угла.
Поскольку прямая AB касается окружности с центром O в точке B, то угол между прямой AB и радиусом OB, проведенным в точке касания, равен 90°. Это свойство касательной к окружности.
Также, так как хорда AB стягивает дугу 45°, угол между радиусом OB и хордой AB будет половиной этого угла, то есть 22.5°.
Теперь мы можем рассмотреть треугольник OAB. У нас есть два угла: угол OAB (который мы хотим найти) и угол OBA (который равен 22.5°), а также прямой угол в точке B. Сумма углов в треугольнике равна 180°, поэтому:
Угол OAB + Угол OBA + Прямой угол = 180° Угол OAB + 22.5° + 90° = 180° Угол OAB = 180° - 22.5° - 90° Угол OAB = 67.5°
Таким образом, угол OAB равен 67.5°.
Теперь мы можем использовать тригонометрический подход. В треугольнике OAB:
cos(Угол OAB) = Adjacent / Hypotenuse cos(67.5°) = AO / 3 (так как радиус окружности - 3 см)
Теперь найдем AO:
AO = 3 * cos(67.5°) AO ≈ 1.5 см
Итак, длина AO примерно равна 1.5 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili