Вопрос задан 09.07.2018 в 23:20.
Предмет Геометрия.
Спрашивает Прищепа Никита.
В равнобедренном прямоугольном треугольнике один из катетов лежит в плоскости a, а другой образует
с ней угол 45. Найдите угол между гипотенузой данного треугольника и данной плоскостью. Если не трудно,с рисунком пожалуйстаОтветы на вопрос
        Отвечает Трунилин Ваня.
                
     Равнобедренный прямоугольный ΔАВС (∠В=90°, АВ=ВС)
Опустим перпендикуляр на плоскость АД (∠АДВ=∠АДС=90°)
∠АВД=45°
Нужно найти ∠АСД.
В ΔАВС обозначим АВ=ВС=х, тогда гипотенуза АС=√2АВ²=√2х²=х√2
В прямоугольном ΔАДВ ∠АВД=45°, значит и ∠ВАД=45°, следовательно этот треугольник равнобедренный (АД=ВД=АВ/√2=х/√2).
Из прямоугольного ΔАДС найдем ∠АСД:
sin АСД=АД/АС=х/√2:х√2=1/2
∠АСД=30°

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			