Вопрос задан 08.07.2018 в 17:36. Предмет Геометрия. Спрашивает Шитова Динара.

Составьте уравнение окружности, котороя касается оси x в точке B(3;0) и имеет радиус равный 2,5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жолобова Александра.

Из условия следует, что ось OX - касательная к окружности, следовательно, радиус окружности перпендикулярен этой оси. Проведем прямую, перпендикулярную оси OX, и пересекающую ее в точке (3;0). Тогда точки на этой прямой на расстоянии 2.5 от точки B могут быть центрами окружности. Таких точек две - A(3; 2.5); C(3;-2.5). Теперь, зная координаты центра окружности и длину радиуса, составляем два уравнения: (x-3)^2+(y-2,5)^2=2,5^2, (x-3)^2+(y+2,5)^2=2,5^2

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос