
Вопрос задан 08.07.2018 в 17:36.
Предмет Геометрия.
Спрашивает Шитова Динара.
Составьте уравнение окружности, котороя касается оси x в точке B(3;0) и имеет радиус равный 2,5


Ответы на вопрос

Отвечает Жолобова Александра.
Из условия следует, что ось OX - касательная к окружности, следовательно, радиус окружности перпендикулярен этой оси. Проведем прямую, перпендикулярную оси OX, и пересекающую ее в точке (3;0). Тогда точки на этой прямой на расстоянии 2.5 от точки B могут быть центрами окружности. Таких точек две - A(3; 2.5); C(3;-2.5). Теперь, зная координаты центра окружности и длину радиуса, составляем два уравнения: (x-3)^2+(y-2,5)^2=2,5^2, (x-3)^2+(y+2,5)^2=2,5^2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili