Вопрос задан 01.07.2023 в 09:27. Предмет Геометрия. Спрашивает Лучшев Максим.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Вычислите сумму квадратов сторон сечения,

образованного плоскостью, которая проведена через отрезок AB1 и точку C, если a,b,c – измерения параллелепипеда, причем a=4,b=2,c=8
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедев Павел.

Ответ:

168

Объяснение:

АВ = 2, BC = 4,  BB₁ = 8.

Соединяем точку  С с концами отрезка  АВ₁.

АСВ₁ - искомое сечение.

Из прямоугольного треугольника АВС по теореме Пифагора:

AC² = AB² + BC² = 2² + 4² = 4 + 16 = 20

Из прямоугольного треугольника АВB₁ по теореме Пифагора:

AB₁² = AB² + BB₁² = 2² + 8² = 4 + 64 = 68

Из прямоугольного треугольника CBB₁ по теореме Пифагора:

CB₁² = BB₁² + BC² = 8² + 4² = 64 + 16 = 80

AC² + AB₁² + CB₁² = 20 + 68 + 80 = 168


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы вычислить сумму квадратов сторон сечения параллелепипеда, образованного плоскостью, проведенной через отрезок AB1 и точку C, мы можем воспользоваться геометрическими свойствами параллелепипеда.

Сначала определим, какие стороны параллелепипеда будут видны в данном сечении. Плоскость, проведенная через отрезок AB1 и точку C, будет пересекать три пары противоположных граней параллелепипеда.

Согласно заданным измерениям a=4, b=2 и c=8:

  1. Первая пара противоположных граней: грани AB1C1D и ADC1B1.

    • Длина стороны AD (или AD1) равна c=8.
    • Длина стороны AB1 равна b=2.
  2. Вторая пара противоположных граней: грани A1BCC1 и ADD1C1.

    • Длина стороны A1C1 (или AC) равна a=4.
    • Длина стороны A1B равна b=2.
  3. Третья пара противоположных граней: грани AB1CC1 и ADCD1.

    • Длина стороны AB1 равна b=2.
    • Длина стороны AC равна a=4.

Теперь можем вычислить площади квадратов сторон каждой из этих трех пар граней:

  1. Площадь квадрата грани AB1C1D (или ADC1B1): AD * AB1 = 8 * 2 = 16.
  2. Площадь квадрата грани A1BCC1 (или ADD1C1): A1C1 * A1B = 4 * 2 = 8.
  3. Площадь квадрата грани AB1CC1 (или ADCD1): AB1 * AC = 2 * 4 = 8.

Итак, сумма квадратов площадей этих трех сечений будет равна: 16 + 8 + 8 = 32.

Следовательно, сумма квадратов сторон сечения, образованного плоскостью, проведенной через отрезок AB1 и точку C, равна 32.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос