Вопрос задан 27.06.2023 в 21:21. Предмет Геометрия. Спрашивает Смердов Максим.

Найдите площадь треугольника, вершины которого равны: (-1;2), (-1;5),(4;0). пОМОГИТЕ! сРОЧНО

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Даниил.

Ответ:

A(-1;2)\ \ ,\ \ B(-1;5)\ \ ,\ \ C(4;0)\\\\AB=\sqrt{(-1+1)^2+(5-2)^2}=3\\\\h\perp AB\ \ \to \ \ \ h=CH=x_{C}-x_{H}=4-(-1)=5\\\\S=\dfrac{1}{2}\cdot \frac{x}{y} B\cdot h=\dfrac{1}{2}\cdot 3\cdot 5=7,5


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти площадь треугольника с заданными вершинами, вы можете использовать формулу площади треугольника по координатам вершин. Формула для этого выглядит следующим образом:

Площадь = 0.5 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Где (x1, y1), (x2, y2) и (x3, y3) - это координаты вершин треугольника.

В вашем случае вершины треугольника следующие: A (-1, 2) B (-1, 5) C (4, 0)

Теперь мы можем подставить эти координаты в формулу и вычислить площадь:

Площадь = 0.5 * |-1(5 - 0) - (-1)(0 - 2) + 4(2 - 5)|

Площадь = 0.5 * |-5 + 2 + 12|

Площадь = 0.5 * |9|

Площадь = 4.5

Площадь треугольника с заданными вершинами равна 4.5 квадратных единиц.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос