
Вопрос задан 05.07.2018 в 14:44.
Предмет Геометрия.
Спрашивает Естафьева Соня.
В треугольник со сторонами 20, 34, 42 вписан прямоугольник с периметром 40 так ,что его сторона
лежит на большей стороне треугольника. Найдите стороны прямоугольника.Огромная просьба подробно объяснить решение

Ответы на вопрос

Отвечает Сироткин Виталий.
Видимо надо найти стороны ПРЯМОУГОЛЬНИКА! Так как стороны ТРЕУГОЛЬНИКА в условии даны!
Рисунок смотри во вложении.
Пусть х и у - стороны пр-ка. Проведем дополнительно высоту ВЕ тр-ка АВС.
Найдем ее. Площадь по формуле Герона:
S = корень(48*28*14*6) = 336 (полупериметр р = 48)
С другой стороны:
S = (1/2)*42*BE = 336
Отсюда ВЕ = 16
Из подобия тр-ов ВКМ и АВС:
х/42 = ВК/20
Отсюда ВК = 10х/21, АК = 20 -10х/21 = (420-10х)/21
Из подобия тр-ов АКР и АВЕ:
у/16 = АК/20
Или: у/16 = (42-х)/42
8х + 21у = 336
Другое уравнение системы получим из условия, что периметр пр-ка равен 40:
х + у = 20. Домножим это уравнение на (-8) и сложим с предыдущим.
13у = 176
у = 176/13, тогда х = 20 - 176/13 = 84/13
Ответ: 176/13; 84/13.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili