
З повним розв'язанням) Гіпотенуза прямокутного трикутника дорівнює 26 см, а сума катетів - 34 см.
Знайдіть площу трикутника.

Ответы на вопрос

Ответ:
Пусть первый катет-х, второй-у, c-гипотенуза
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²



Давайте розв'яжемо це завдання.
Ми маємо прямокутний трикутник, де гіпотенуза (позначимо її як "c") дорівнює 26 см і сума катетів (позначимо їх як "a" і "b") дорівнює 34 см.
За теоремою Піфагора маємо такий зв'язок між гіпотенузою і катетами прямокутного трикутника:
c^2 = a^2 + b^2
Ми знаємо значення гіпотенузи c = 26 см. Підставимо це значення у рівняння:
26^2 = a^2 + b^2
676 = a^2 + b^2
Також ми знаємо, що сума катетів a і b дорівнює 34 см:
a + b = 34
Тепер ми можемо використовувати систему двох рівнянь для знаходження значень a і b. Спростимо друге рівняння, виразивши одну зі змінних:
a = 34 - b
Тепер підставимо це вираз в перше рівняння:
676 = (34 - b)^2 + b^2
Розкриємо дужки в другому рівнянні:
676 = 1156 - 68b + b^2 + b^2
Тепер спростимо рівняння та зведемо його до квадратного рівняння:
2b^2 - 68b + 480 = 0
Поділимо всі члени рівняння на 2, щоб спростити його:
b^2 - 34b + 240 = 0
Тепер ми можемо розв'язати це квадратне рівняння. Для цього використаємо квадратне рівняння:
b = (-b ± √(b^2 - 4ac)) / 2a
У нашому випадку, a = 1, b = -34 і c = 240.
b = (34 ± √((-34)^2 - 4(1)(240))) / (2(1))
Тепер обчислимо значення b:
b = (34 ± √(1156 - 960)) / 2
b = (34 ± √196) / 2
b = (34 ± 14) / 2
Тепер маємо два можливих значення b:
- b = (34 + 14) / 2 = 24 см
- b = (34 - 14) / 2 = 10 см
Отже, ми знайшли два можливих значення катетів: a = 24 см і b = 10 см.
Тепер можемо знайти площу прямокутного трикутника за формулою:
Площа = (a * b) / 2
- Площа = (24 см * 10 см) / 2 = 240 см^2
- Площа = (10 см * 24 см) / 2 = 240 см^2
Отже, площа прямокутного трикутника дорівнює 240 квадратним сантиметрам.


Похожие вопросы

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili