
Точки А1,В1,С1- основания высот треугольника АВС, углы треугольника А1В1С1 равны 20 градусов,70
градусов, 90 градусов. Найдите углы треугольника АВС.

Ответы на вопрос

В этой задаче надо знать, что в ортотреугольнике (так называется треугольник A1B1C1) высоты AA1, BB1 и CC1 треугольника ABC являются биссектрисами.
Если это известно, то решение занимает пару строчек.
H - точка пересечения высот.
В четырехугольнике AC1HB1 два угла прямые, поэтому ∠CAB = 180° - ∠B1HC1; но ∠B1HC1 = 180° - (∠HC1B1 + ∠HB1C1);
поэтому ∠CAB = ∠HC1B1 + ∠HB1C1 = (∠A1C1B1 + ∠A1B1C1)/2
точно так же ∠CBA = ∠HA1C1 + ∠HC1A1 = (∠B1A1C1 + ∠B1C1A1)/2
∠BCA = ∠HA1B1 + ∠HB1A1 = (∠C1A1B1 + ∠C1B1A1)/2
то есть углы треугольника ABC будут такие
(20° + 90°)/2 = 55°; (20° + 70°)/2 = 45°; (70° + 90°)/2 = 80°;
Теперь я приведу одно из нескольких известных мне доказательств свойства ортотреугольника. Это гораздо интереснее и полезнее, чем эта задачка.
Если построить окружность на стороне AC, как на диаметре, то она пройдет через точки A1 и C1 (из за прямых углов). Это означает, что ∠CC1A1 = ∠CAA1; как вписанные углы, опирающиеся на одну и ту же дугу CA1;
Точно так же, если построить окружность на стороне BC, как на диаметре, то она пройдет через точки B1 и C1, и ∠CC1B1 = ∠CBA1; как вписанные углы, опирающиеся на одну и ту же дугу CB1;
Но ∠A1AC = ∠B1BC = 90° - ∠ACB; следовательно ∠A1C1C = ∠B1C1C,
ЧТД => СС1 является биссектрисой ∠B1C1A1;
Само собой, и про остальные высоты все доказывается точно так же.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili