
Вопрос задан 30.06.2018 в 02:22.
Предмет Геометрия.
Спрашивает Воротов Дима.
Строна правильного четырехугольника вписанного в окружность на 2 см меньше стороны правильного
треугольника вписанного в ту же окружность найдите периметр квадрата описанного около данной окружности

Ответы на вопрос

Отвечает Фахурдинова Дарина.
Сторона правильного треугольника, вписанного в окружность, равна:
а₃ = R√3.
Сторона правильного четырёхугольника, вписанного в окружность, равна:
а₄ = R√2.
По условию задачи R√3 - R√2 = 2.
Отсюда радиус окружности равен:
R = 2 / (√3 - √2) = 6.292529.
Окружность, описанная около первого квадрата, является вписанной в заданный (второй) квадрат.
Сторона этого квадрата равна : а = 2R = 2* 6.292529 = 12.58506.
Тогда периметр заданного квадрата равен:
Р = 4а = 4* 12.58506 = 50.34023.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili