Вопрос задан 17.06.2023 в 15:58. Предмет Геометрия. Спрашивает Аглиуллина Юлия.

Найдите периметр и площадь квадрата, если его диагонали равны: 18 см.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Трошицева Светлана.

Ответ:

Р=36√2см

S=162см²

Объяснение:

d=18сс;

d=a√2, где а-сторона квадрата.

а=d/√2=18/√2=9√2см

Р=4а=4*9√2=36√2см.

S=a²=(9√2)²=81*2=162см²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать свойства квадрата, связанные с его диагональю.

Известно, что в квадрате все стороны равны между собой, а диагональ делит его на два равных прямоугольных треугольника.

По теореме Пифагора для прямоугольного треугольника со сторонами \( a \), \( b \) и гипотенузой \( c \) выполняется соотношение:

\[ c^2 = a^2 + b^2 \]

В квадрате с диагональю \( d \) известно, что диагональ делит его на два равных прямоугольных треугольника, поэтому каждая сторона квадрата равна половине диагонали, то есть \( \frac{d}{2} \).

Дано, что диагональ \( d = 18 \, \text{см} \), таким образом, каждая сторона квадрата:

\[ \text{Сторона} = \frac{d}{\sqrt{2}} = \frac{18}{\sqrt{2}} = 9\sqrt{2} \, \text{см} \]

Теперь мы можем найти периметр квадрата, который представляет собой сумму всех его сторон. У квадрата все стороны равны, поэтому периметр равен:

\[ \text{Периметр} = 4 \times \text{Сторона} = 4 \times 9\sqrt{2} = 36\sqrt{2} \, \text{см} \]

Чтобы найти площадь квадрата, можно воспользоваться формулой:

\[ \text{Площадь} = \text{Сторона}^2 \]

Таким образом,

\[ \text{Площадь} = (9\sqrt{2})^2 = 81 \times 2 = 162 \, \text{см}^2 \]

Итак, периметр квадрата составляет \( 36\sqrt{2} \, \text{см} \), а площадь равна \( 162 \, \text{см}^2 \).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос